
Privacy-Preserving Reputation-Based Lending Systems
Sarayu Namineni, advised by Prof. Seth Goldstein

Carnegie Mellon University, Computer Science Department

RESULTS

CONCLUSIONS

INTERFACEABSTRACT

BACKGROUND

Concerned with the privacy of their digital
transactions, users are averse to leaving the very
digital trace necessitated by reputation-based
lending systems. Our design converts between
account and UTXO wallet representations to hide
the transfer’s origin, value, and destination while
the underlying scrip still gains reputation. Our
approach results in fast and cheap online
computation, while total transaction times scale
linearly in the number of recipients.

In a reputation-based lending system, users can
issue their own scrips, or ZUZ specifications, to
be redeemed in exchange for goods and services
in the future. In turn, these specifications gain
value when instances of them are traded by
individuals or at businesses outside of the ones
that issued them. When such transactions are
made transparent and universally accessible,
such as by being recorded on a distributed public
ledger, we can base a scrip’s reputation off of its
acceptability.

Under such a system, a user can conduct an
anonymous transaction by minting ZUZ instances
from a new specification issued under a new
pseudonym. Since neither the specification nor
the pseudonym have any history associated with
them, the transaction is completely anonymous;
however, for the very same reason, other users
on the network have little to no incentive to
accept these funds in a transaction. Without a
way for users to spend their existing funds
privately, such a system is rendered unusable.

In our smart contract implementation, users can
create ZUZ specifications, and mint, pour, and
transfer ZUZ instances. A pour operation allows
a user to convert a public ZUZ instance into a
private ZUZ instance, and vice versa.

Public instances are represented by numerical
balances, like accounts, whereas private
instances are represented as lists of
commitments, like unspent transaction outputs.

Note that the ZUZ specification is made public
in all parts of the interface so that the underlying
scrip can still gain reputation through private
transfers.

Pour (, , [], , ,): For

the ZUZ specification , the sender converts between their
• old public balance and private balances […],

and
• new public balance and private balance

by providing a zero-knowledge proof which shows
• the sender can unlock all the provided commitments, and
• balance is preserved

Transfer (, [], [],
, [],):

For the ZUZ specification , the sender
• adds private balance to recipient along with the

parameters to unlock the commitment

• replaces sender’s private balances [] with
new private balance

by providing a zero-knowledge proof which shows
• the sender has sufficient funds, and
• balance is preserved

In both cases, the smart contract must validate
that the inputs to the ZKP match the ledger
state to prevent double-spending attacks.

One remaining challenge is mitigating wash
attacks on the reputation of ZUZ specifications
under private transfers.

spec bold
pub cmold

1 . . . cmold
w bnew

pub cmnew πPOUR

spec
bold

pub cmold
1 cmold

w

bnew
pub cmnew

πPOUR

spec cmrecv
1 . . . cmrecv

r cmold
1 . . . cmold

w
cmnew Encpk1

({b1, ω1}) . . . Encpkr
({bn, ωr}) πTRANSFER

spec
cmrecv

i pki
Encpki

({bi, ωi})
cmold

1 . . . cmold
w

cmnew

πTRANSFER

Moving computation offline results in practical
smart contract transaction speeds and gas
costs for destination- and value-anonymous
transfers. By introducing client-side validation,
our protocols allow senders to conceal their
identity and recipients to pay for their privacy.

Future work aims to reduce the time
complexity of client-side proof generation,
through Merkle tree wallet representations or
pre-compilation of ZKPs and analyze the
system against various attack vectors (i.e.
malicious clients, statistical inference, etc.).

User issues new scrips

ZUZ specifications

ZUZ instances

User

User mints coins

TRANSFER PROTOCOLS
One-step transfer:

Two-step transfer:

Three-step transfer:

Alice

Bob

Adam

Charlie

Smart
contractπTRANSFER cmA′ , EncA′ (0)

cm
C , EncC (0)

cmB, EncB(b)

cmA

• Destination-anonymous
• Smart contract validation
• Issue: Alice pays for Bob’s privacy

BobAdam Charlie

cmB
TRANSFER, πB

TRANSFER

• Destination-anonymous
• Smart contract validation of Alice and client-

side validation of Bob
• Bob pays for his own privacy

Alice

cmA′ , EncA(bA′ , ωA′) cmB, EncA(bB, ωB) cmC, EncA(bC, ωC)

• Destination- and origin-anonymous
• Client-side validation of Alice and Bob
• Bob pays for his own privacy

πA
TRANSFER

cmB
TRANSFER, cmA

…

Step 1: Bob requests Alice, Alice validates

Step 2: Alice receives funds on transfer

Alice

Charlie

cmA, EncB(0
)

cmC , EncB(0)

cmB, EncB(b)
πA

TRANSFER
Bob

Alice

Charlie

Bob

cmA, EncA(b
)

cmC , EncA(0)

cmB, EncA(0)
πB

TRANSFER

Step 1: Alice
initiates, Bob
validates

Step 2: Bob pays for
privacy, Alice
validates

Step 3: Alice receives funds on transfer

Our experimental results confirm that offline
transaction times scale linearly in the size of
the anonymity set whereas online
computation is constant and low cost.

Time complexity of ZKP circuits for interface
ZKP circuit Parameters Time Complexity

Pour • w balances O(w)

Transfer (one-step)

• w sender
balances

• r recipient
balances

O(r+w)

Transaction Times (s)

0

50

100

150

200

r=2 4 6 8 10

Prove (w = 2) Verify (w = 2)
Total (w = 2)

Gas Costs (Wei)

ZUZ

Zether

0 2000000 4000000 6000000 8000000

7,188,000

659,583

260,000

335,430
“Pour”/“Fund” Transfer

