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Abstract
In a reputation-based lending system, the acceptability of a
scrip is measured through its transaction history, creating an
inherent trade-off between contributing either to the repu-
tation of a scrip or the privacy of a transfer. Our proposal,
ZUZ, maintains a concise but flexible state, where the pri-
vate balance alternates between an account- and a UTXO-like
wallet representation. We implement destination- and value-
anonymous transfers over rings of users, which obfuscates
the link between a sender and a recipient through plausible
deniability, while still allowing the underlying scrip to gain
reputation. We also design transfer protocols under this model
with stronger privacy guarantees, including a “pay for pri-
vacy" scheme and origin-anonymous transfers. Our approach
results in practical online computation speeds and constant
gas costs, whereas total transaction times scales linearly in
the anonymity set.

1 Introduction

In a reputation-based lending system, individuals and busi-
nesses can issue their own scrips to be redeemed in exchange
for goods and services in the future. In turn, these scrips gain
value when they are traded by individuals or at businesses
outside of the ones that issued them.

Reputation-based lending systems mitigate issues present
in the current lending market, such as asymmetric informa-
tion and imperfect competition, by recording all transactions
on a distributed public ledger. Transactions made under a
transparent and universally accessible system contribute to
the reputation of an individual or business, as measured by
the acceptability of their scrips.

However, with the rise of privacy coins [1] such as Zero-
cash and Monero, it is increasingly clear that users are op-
posed to having their transaction history be linked to their
public identity. Concerned with the privacy of their digital
transactions, users are averse to leaving the very digital trace
necessitated by reputation-based lending systems.

Our first attempt to conduct anonymous transactions in
a reputation-based system is as follows. Simply put, a user
takes a new pseudonym and defines a new scrip under it.
Then, we claim that any instances that they mint from this
scrip constitutes anonymous payment [6].

Since neither the scrip nor the pseudonym have any history
associated with them, the transaction is completely anony-
mous; however, for the very same reason, other users on the
network have little to no incentive to accept these funds in a
transaction. Without a way for users to spend their existing
funds privately, such a system is rendered unusable.

Thus, our goal is to design a privacy-preserving payment
scheme over the scrips in a reputation-based lending smart
contract. This payment mechanism will allow users to pri-
vately transfer instances of user-defined scrips, by concealing
the amount of a given scrip that is transferred and unlinking
the sender from the recipient of a transfer, all while allowing
the underlying scrip to accrue reputation.

2 Background and Motivation

Bitcoin and Ethereum are the two cryptocurrencies with the
highest market capitalization, but there is an important dif-
ference in the way that they store information. Bitcoin stores
a list of all unspent transaction outputs, or UTXOs, whereas
Ethereum maintains a balance for every account. Neither
cryptocurrency natively supports private transactions.

For UTXO-based blockchains, there are well-known solu-
tions that allow for private payments, such as Zerocash [3],
Monero [2], and Dash. On the other hand, for account-based
blockchains, there has been no major trend towards adoption
of any single privacy-preserving technology.

Importantly, due to their intuitive representation of state,
account-based blockchains facilitate the development of vari-
ous applications atop them, or smart contracts. Designing a
practical privacy-preserving smart contract presents the op-
portunity to add a meaningful level of privacy to the numer-
ous decentralized applications, or dApps, on account-based
blockchains.
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2.1 Account-Based Approaches

For a given user u and ZUZ specification s, a public ZUZ in-
stance is represented by a single numerical value bpub, which
is the user’s balance on this ZUZ specification. A private ZUZ
instance is represented as a commitment cm of some numeri-
cal value bpriv representing the amount of private funds that
the user owns on this ZUZ specification. This is the most
concise representation of the ledger state that we can achieve
under this model, given that there must be a distinction be-
tween public and private funds.

However, enforcing an account-based representation of
private wallet funds at all times makes the design vulnerable to
front-running attacks. This attack refers to the race condition
where the ledger state changes between the time a client sends
the transaction and a validator processes the transaction. This
could happen because transactions within a block can be
processed in any order.

For instance, suppose Alice wishes to privately send funds
to Bob at the same time that Charlie wishes to privately send
funds to Alice. If Charlie’s transaction gets processed before
Alice’s, then Alice’s private balance will be different than
the state under which Alice formed her transaction. For any
system that guarantees anonymity over value, private balances
should be computationally indistinguishable from each other,
and it would not be desirable to leak partial ordering over the
encrypted data.

Zether [4], which homomorphically encrypts users’ ac-
count balances, faces the same issue. Their solution is to
maintain a table of pending transfers, instead of updating the
users’ actual account balances. However, this leads to the
issue of when to rollover the funds into the user’s accounts
without inadvertently launching a front-running attack again.
Their solution is to rollover a user’s funds the next time they
make a transaction so that they are available to spend during
the transaction.

In our design, we address this situation by allowing for
flexibility between the account-based and the UTXO-based
representation of wallets. We allow commitments from dif-
ferent private transfers to be appended to a user’s wallet. For
instance, in the previous example with Alice’s transaction
and Charlie’s transaction, Alice’s transaction can still be effi-
ciently validated using the set of commitments she provided
in her transaction, even if Charlie’s commitment got added to
her account before her transaction was processed, assuming
that these are destination-and value-anonymous transfers.

Similar to how Zether rolls over pending transfers at the
start of the next transaction, we also enforce that users com-
bine their list of wallet commitments during an operation (see
section 3.2.1). The difference is that this computation is of-
floaded to the user. By shifting the burden of computation,
we can achieve more practical smart contract compute speeds
and gas costs.

2.2 UTXO-based approaches

Under the ZUZ protocol, there is a one-way flexibility when
it comes to representing their private account balance as a list
of wallet commitments. We enforce that the commitments are
joined after every operation, but we do not allow users to split
their existing commitments any further. Rather, the multiplic-
ity of wallet representation can only be triggered by external
events. We briefly consider why it would be impractical to
take a completely UTXO-based approach, with both join and
split functionality.

ZETH [9] is a smart contract integration of Zerocash, a
UTXO-based privacy-preserving payment scheme which al-
lows users to commit their funds into a pool and anonymously
spend from that pool by proving ownership in zero-knowledge
over some funds in set of all commitments. In ZETH, the pour
operation, which allows users to transfer funds, is general-
ized to convert N private inputs into M private outputs. This
generality allows users to join and split their funds arbitrarily.

Even though Zerocash takes a Bitcoin-like approach in
their design, there is an important difference between the two
systems. In Bitcoin, full nodes can form a concise representa-
tion of the blockchain by maintaining a set of all addresses
with a nonnegative balance, or a UTXO set [7]. Indeed, full
nodes use this representation to efficiently check for double
spending, simply by checking if the given input to a trans-
action appears in this set or not. Note that when a transfer
occurs, the size of this set stays the same; the address of the
sender is removed from the UTXO set and the address of the
recipient is added to the set.

However, under Zerocash, this concise representation
breaks down, since addresses are only added to the UTXO
set but are never removed. The size of the UTXO set is mono-
tonically increasing, which has averse implications for the
scalability of the smart contract implementation, ZETH [8].
The mixer contract maintains a deep Merkle tree, and where
the entire set of leaves, along with all the corresponding serial
numbers, needs to be kept in storage in perpetuity.

In our design, we address this situation by only allowing
users to perform join operations over their sets of private wal-
let commitments, instead of both join and split operations.
Whereas the flexibility with UTXO-like representation of pri-
vate balances allows for handling concurrency issues, the join
operation returns an account back to its concise representation,
ensuring better scalability of the smart contract.

3 ZUZ Smart Contract

3.1 Definitions

First, we define the objects in a reputation-based lending
system. There is a user, who conducts transactions under
various pseudonyms, each represented by a different account
keypair. We refer to the denomination of all user-defined
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currency as ZUZ. The user has the ability to issue new scrips,
which we will call ZUZ specifications under any one of their
pseudonyms. When the user wants to put their specification
into circulation, they mint ZUZ instances.

3.2 Implementation

The implementation currently consists of creating ZUZ speci-
fications, minting, and transferring public ZUZ instances, as
well as converting private instances to and from public in-
stances and performing destination-and value- anonymous
transfers over private instances.

The specification for transferring and converting to and
from private instances consists of a single operation:

Fund (s, [pk1, ..., pkr], [cmrecv
1 , ...,cmrecv

r ], [cmold
1 , ...,cmold

w ],
cmnew,bold

pub,b
new
pub, [Encpk1(b1,ω1)...Encpkr(br,ωr)],

πFUND), which takes in a ZUZ specification s, a
list of recipients for the transaction [pk1, ..., pkr], a
list of the private transfer commitments respective
to the list of recipients [cmrecv

1 , ...,cmrecv
r ], a list of

the sender’s current private wallet commitments
[cmold

1 , ...,cmold
w ], the sender’s new private wallet

commitment cmnew, the sender’s current public balance
bold

pub, the sender’s new public balance bnew
pub, a list

of the parameters (i.e. the transfer amount bi and
randomeness ωi) needed to unlock each of the transfer
commitments, encrypted with respect to the list of
recipients [Encpk1(b1,ω1)...Encpkr(br,ωr)], and a
zero-knowledge proof πFUND that shows that the
transaction is well-formed and the sender has sufficient
funds for transaction.

The smart contract must validate that list of the sender’s
wallet commitments matches the state of the sender’s
wallet on the ledger to prevent double-spending attacks.
If the smart contract is able to validate the inputs to the
zero-knowledge proof and verify the zero-knowledge
proof, then it will append the update the sender’s wallet
with the new commitment and append transfer commit-
ments to their respective accounts.

3.2.1 Conversions

First, we demonstrate how the fund operation can be used
to convert public ZUZ instances into private ones, and vice
versa. A private balance is represented as a commitment of a
numerical value b and randomness ω over a spec s. The fund
operation adds a commitment to the sender’s wallet, as well
as all the listed recipient’s wallets, given that the sender has
sufficient funds to make the transfer. Thus, in order to convert
public ZUZ instances into private ones, or vice versa, the
user can invoke Fund with empty lists of recipients, recipient
transfer commitments, and recipient transfer parameters.

Figure 1: Wallet representations in a destination- and value-
anonymous transfer

3.2.2 Destination- and Value-Anonymous Transfer

Next, we illustrate how the fund operation can be used to
perform a destination- and-value anonymous transfer (Figure
1). The sender specifies a ring of recipient users to send a
transfer commitment to. Only one of these users needs to
have a non-zero transfer balance. The sender will broadcast
the parameters needed to unlock the transfer commitments,
which are the transfer balance bi and randomness ωi. (For
the proof of concept implementation, ωi is omitted). These
parameters will be encrypted with the public keys of the re-
spective recipient, so only the sender and recipient will know
the value in the commitment.

Note that by the nature of smart contract transactions, only
the owner of an account can authorize expenditure of the
private wallet commitments stored in their account. This is
because transactions are signed with the private key of the
sender, which means that in order to initiate a transaction to
spend a wallet commitment stored in an account, one must
know the private key corresponding to that account. Even
though the sender and the recipient both know the value in
the transfer commitment, the sender cannot spend it since
constructing such a transaction would require knowledge of
the recipient’s private key.

This specification guarantees that the sender’s account bal-
ance returns to a concise, dual-balance representation after
every operation. The sender provides a list of their current
wallet commitments and a new commitment, which represents
the aggregate state over all their private balances, including
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the private balance that is implicit in the transfer.
The zero-knowledge proof ensures that the transfer is well-

formed and that the sender has sufficient funds for to complete
the transfer. More specifically, it checks that the sum over
all private transfer balances brecv

1 + ...+brecv
r that unlock the

transfer commitments cmrecv
1 , ...,cmrecv

r is less than or equal
to the sum over sender’s public and private balances before
the transfer, or brecv

1 + ...+ brecv
r ≤ bold

pub + bold
1 + ...+ bold

w .
It also ensures that the sender’s new public and private
balance splits the difference between these two values, or
bold

pub +bold
1 + ...+bold

w − (brecv
1 + ...+brecv

r ) = bnew
pub +bnew

priv.

Incentive to pay for privacy With a destination- and value-
anonymous transfer, every recipient has plausible deniability
since it is unknown who the intended recipient of the transfer
was. Furthermore, since our scheme allows for the arbitrary
denomination of private balances and every transfer joins all
the wallet commitments of a given user, it is impossible to
explicitly trace the flow of a commitment between sender and
recipient. This follows from the security analysis in ZETH,
which only guarantees destination-and value-anonymity trans-
fers over arbitrary denominations using a mixer contract [9].

The only difference in the security analysis is that the
sender of a ZETH transaction is hidden among the set of all
previous users of the mixer contract, whereas in our scheme,
the sender is hidden among the set of all previous users that
have privately sent funds to the recipient (which may include
the recipient themselves). Even if no one has privately sent
funds to a particular user before, the user still has some pri-
vacy, or plausible deniability, over the size of the ring specified
by the sender to transfer funds.

However, there arises a discrepancy in incentives when it
comes to paying for privacy. Under the model presented thus
far, the sender of a transaction funds the gas cost for private
transfer. Although the privacy for the recipient increases as
the size of the ring increases, the cost of a transfer does too.
Thus, the sender must pay for the recipients’ privacy, which
does not always align with the sender’s incentives.

3.2.3 Attempt at Origin-Anonymous Transfer

In order to make a transaction on an account-based blockchain
like Ethereum, the sender of the transaction must pay some gas
fees. A prerequisite to making an origin-anonymous transfer,
then, is to be able to acquire and spend ETH on an account that
is distinct from the origin of the transfer of the user-defined
scrip.

Our first attempt to make an origin-anonymous transfer is
to include the sender in the list of recipients of the transaction.
Note that in order for the sender to remain anonymous in
this ring of recipients, they must send this transaction from
an account that is distinct from any of the recipients in the
transaction. The sender transfers themselves a negative pri-
vate balance such that the sum over all the transfer balances,

Figure 2: Wallet representations in a double-spending attack

positive and negative, equals zero.
The sender must also prove that they have sufficient funds

to make this transfer. More specifically, the sender must prove
that the sum over all their private balances, including the
negative transfer balance, is nonnegative. However, in order
to preserve anonymity of the origin under this model, the
zero-knowledge proof doesn’t just take in the sender’s wallet
commitments as input but rather all the recipients’ wallet
commitments.

As stated in the specification, the smart contract must vali-
date that the inputs to the zero-knowledge proof are consistent
with the ledger state in order to prevent double-spending at-
tacks. As shown in Figure 2, if Alice has two private balances
in her wallet, which correspond to the values +5 and −2, but
she proves in zero-knowledge that she has sufficient funds
only over the first commitment, she may be able to spend
funds that she does not have. Thus, the smart contract must
validate that the sender’s wallet commmitments used as input
to the zero-knowledge proof are consistent with the ledger
state.

However, in the origin-anonymous protocol, the zero-
knowledge proof takes the wallet commitments of all the
members of the ring as input. By definition of an origin-
anonymous transfer, the smart contract should not be able
to distinguish between the sender’s wallet commitments and
the recipients’ wallet commitments. Thus, the smart contract
needs to validate that all wallet commitments are consistent
with the state of the ledger when it processes the transaction.

This presents a problem since recipients may be involved
in other transfers at the same time, which means that the state
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of their wallet commitments could change between the time
the sender constructs the zero-knowledge proof and the time
that the transaction is processed.

4 Transfer Protocols

4.1 "Pay for Privacy" Scheme

First, we address the mismatch in incentives in a destination-
and value-anonymous transfer by presenting a "pay for pri-
vacy" scheme, which extends the transfer protocol to allow a
recipient to anonymously put in a request for a private transfer
with some compensation to cover its cost. Note that compen-
sation must be in the form of a ZUZ instance, not ETH. Also
note that the person who is being requested to send money, or
the sender of the transfer, is still a publicly known parameter.

Suppose that Bob wants to request Alice for funds. Then,
from a distinct account, he sends the transaction specifications
to Alice, including the requested ZUZ specification, the list
of recipient addresses (including Bob’s address), list of com-
mitments corresponding to the amount to privately transfer to
each of the recipients, and list of parameters that unlock each
of the transfer commitments encrypted with Alice’s public
key. Note that Alice is the only person who will be able to
tell who requested funds from her since Bob’s balance will
be nonzero in the list of encrypted parameters.

Bob can also provide some compensation to Alice along
with this specification by using the one-step transfer as a
primitive. The only difference is that the zero-knowledge
proof will have an additional constraint to prove knowledge
of Bob’s private key, as he is signing the transaction request
from a different account. Note that Alice is the only entity
that can efficiently validate this zero-knowledge proof, and
thereby the transaction request, since she is the only party,
including the smart contract, that can distinguish who the
requester of the transaction is.

If Alice successfully validates the transaction, she can com-
plete the request by providing Bob’s transfer specification to
the smart contract and following the one-step transfer pro-
tocol. Upon completing the transfer specification, the smart
contract will transfer the associated compensation to Alice.

Ultimately, the key insight behind this design is to use
client-side validation to efficiently hide the identity of the
requester of a transaction, in order to mitigate the issues pre-
sented in the prior section with smart contract validation.

4.2 Origin-Anonymous Transfer

Next, we extend the above protocol in order to conceal the
origin of a transfer. From a distinct account, Alice sends a
transfer specification, similar to a one-step transfer, except
that the list of parameters are all encrypted with Bob’s public
key. Thus, only Bob knows the identity of the sender of the

ZKP circuit Parameters Time Complexity
Transfer (one-step) •w sender balances O(r+w)

•r recipient balances

Table 1: Time complexity of destination- and value-
anonymous transfer

transaction, which means that he is the only party who can
efficiently validate Alice’s transfer.

If Bob successfully validates the transaction, he can provide
compensation for the transfer, similar to what he sends in the
first round of the “pay for privacy" scheme. Once again, the
list of parameters are encrypted with Alice’s public key, which
menas that she is the only party who can efficiently validate
Bob’s transfer.

Finally, if Alice successfully validates Bob’s transfer, Alice
can accept the transaction, at which point all of the transfer
commitments are appended to all the involved members’ wal-
lets. If Alice or Bob reject the transfer at any step, all pending
state in the smart contract is rolled back.

Building off of the prior scheme, client-side validation is
now used by both parties in the transfer.

4.3 Summary
The protocols summarized in Figure 3 offer increasing lev-
els of privacy at the cost of extended rounds of computation.
The one-step transfer primitive offers destination- and value-
anonymity over arbitrary denominations with smart contract
validation of the sender’s funds. In order to have stronger
privacy guarantees, the recipient can anonymously specify
a ring of users in a transfer specification, along with com-
pensation for the user who will complete the transfer request.
The recipient will have their compensation validated by the
requested sender, and the sender will have their completion
of the transfer validated by the smart contract.

In this way, the recipient is able to pay for their privacy,
providing the sender with an explicit transfer specification
and some compensation to cover the cost of a private transfer.
Nevertheless, the sender is still a public parameter throughout
the two-step transfer process. By extending the protocol for a
third round and using client-side validation for both the sender
and recipient of the transfer, we can achieve origin-anonymity
as well as a “pay for privacy" guarantee.

5 Results

In our implementation, we wrote a smart contract in Solid-
ity to model the reputation-based lending system and used
the Zokrates library to perform offline proof generation and
generate smart contracts for proof verification. One limitation
of this library is that its Javascript bindings cannot withstand
larger circuits, so in future iterations of this implementation
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(a) One-step transfer with destination-and
value-anonymity

(b) Two-step transfer with “pay for privacy"

(c) Three-step transfer with origin anonymity

Figure 3: Summary of private transfer protocols

we will switch to using a lower-level zero-knowledge proof
library.

Note that in the proof of concept implementation provided,
the specification is implemented as three separate operations,
which correspond to each type of conversion as well as a one-
step transfer. Some minor details are omitted, such as ωi when
generating the commitments or public balances evaluated as
part of the list of parameters.

As shown in Figure 4, the times for a destination-and value-
anonymous scale linearly in the size of the anonymity set, or
the number of recipients specified in the transfer. The graph
measures the transfer time where the sender’s wallet is fixed
at a size of w = 2 commitments, and the number of recip-
ients specified in the transfer scales from r = 2 to r = 10.
Transaction times are dominated by the offline computation,
specifically proof generation, where online computation, or

Figure 4: Destination- and value-anonymous transfer times

Figure 5: Comparison of gas costs for privacy-preserving
payment smart contracts

proof verification by the smart contract, remain constant.
Furthermore, in Figure 5, we see that gas costs for transfers

are significantly lower than comparable privacy-preserving
smart contract payment schemes [5], due to the fact that client-
side computation outweighs smart contract computation in
our scheme.

6 Conclusion

Moving computation offline results in practical smart contract
transaction speeds and gas costs for destination- and value-
anonymous transfers. Furthermore, by introducing client-side
validation, our protocols allow senders to conceal their iden-
tity and recipients to pay for their privacy.

One remaining challenge is mitigating wash attacks on the
reputation of ZUZ specifications under private transfers. We
also hope to analyze the system against various attack vectors,
such as malicious clients or statistical inference attacks.

Future work aims to reduce the time complexity of client-
side proof generation, by considering alternative wallet rep-
resentations, such as Merkle trees, or pre-compiling zero-
knowledge proofs.
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